Assembly in the Clouds Michael Schatz

October 13, 2010
Beyond the Genome

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

It was thevbesther bestimfetsiniesyat ithe thorstor	of times, it was the	

- How can he reconstruct the text?
-5 copies $\times 138,656$ words $/ 5$ words per fragment $=138 \mathrm{k}$ fragments
- The short fragments from every copy are mixed together
- Some fragments are identical

It was the best of
age of wisdom, it was

Greedy Reconstruction

best of times, it was

```
it was the age of
```

it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

```
It was the best of
    was the best of times,
the best of times, it
best of times, it was
of times, it was the
of times, it was the
                    times, it was the worst
                    times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

- It was the best of times, it was the [worst/age]

Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

- $D_{k}=(V, E)$
- $\mathrm{V}=$ All length- k subfragments ($\mathrm{k}<\mathrm{I}$)
- $\mathrm{E}=$ Directed edges between consecutive subfragments
- Nodes overlap by k-I words

Original Fragment

It was the best of

Directed Edge
It was the best \longrightarrow was the best of

- Locally constructed graph reveals the global sequence structure
- Overlaps between sequences implicitly computed
de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

Short Read Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
- Human genome: >3B nodes, > IOB edges
- The new short read assemblers require tremendous computation
- Velvet (Zerbino \& Birney, 2008) serial: > 2TB of RAM
- ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
- SOAPdenovo (Li et al., 20I0) pthreads: 40 cores $\times 40$ hours, > 40 GB RAM

Hadoop MapReduce

http://hadoop.apache.org

- MapReduce is the parallel distributed framework invented by Google for large data computations.
- Data and computations are spread over thousands of computers, processing petabytes of data each day (Dean and Ghemawat, 2004)
- Indexing the Internet, PageRank, Machine Learning, etc...
- Hadoop is the leading open source implementation
- GATK is an alternative implementation specifically for NGS
- Benefits
- Scalable, Efficient, Reliable
- Easy to Program
- Runs on commodity computers
- Challenges
- Redesigning / Retooling applications
- Not Condor, Not MPI
- Everything in MapReduce

Hadoop for NGS Analysis

http://www.cbcb.umd.edu/software/quake/

Quake

Quality-aware error correction of short reads

Correct 97.9\% of errors with 99.9% accuracy
(Kelley, Schatz, Salzberg, 2010*)

CloudBurst

Highly Sensitive Short Read Mapping with MapReduce

100x speedup mapping on 96 cores @ Amazon
(Schatz, 2009)

Crossbow

Searching for SNPs with Cloud Computing

SNPs in 4 hours and $\sim \$ 85$ per human genome

(Langmead, Schatz,
Lin, Pop, Salzberg, 2009)
http://bowtie-bio.sf.net/crossbow/

Myrna

Cloud-scale differential gene expression for RNA-seq

Expression of I.I billion RNA-Seq reads in <2 hours for $\sim \$ 66$

(Langmead,
Hansen, Leek, 2010)
http://bowtie-bio.sf.net/myrna/

Graph Compression

- After construction, many edges are unambiguous
- Merge together compressible nodes
- Graph physically distributed over hundreds of computers

Design Patterns for Efficient Graph Algorithms in MapReduce.
Lin, J., Schatz, M.C. (2010) Workshop on Mining and Learning with Graphs Workshop (MLG-20I0)

Warmup Exercise

- Who here was born closest to October 13?
- You can only compare to I other person at a time

Find winner among 64 teams in just 6 rounds

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors
- No "Tournament Bracket"

Randomized List Ranking

- Randomly assign (H)/T to each compressible node
- Compress $(H) \rightarrow T$ links

Initial Graph: 42 nodes

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors
- No "Tournament Bracket"

Randomized List Ranking

- Randomly assign (H)/T to each compressible node
- Compress $(H) \rightarrow T$ links

Round 1: 26 nodes (38\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors
- No "Tournament Bracket"

Randomized List Ranking

- Randomly assign (H)/T to each compressible node
- Compress $(H) \rightarrow T$ links

Round 2: 15 nodes (64\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors
- No "Tournament Bracket"

Randomized List Ranking

- Randomly assign (H)/T to each compressible node
- Compress $(H \rightarrow T$ links

Round 2: 8 nodes (81\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors
- No "Tournament Bracket"

Randomized List Ranking

- Randomly assign (H)/T to each compressible node
- Compress $(H) \rightarrow T$ links

Round 3: 6 nodes (86\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors
- No "Tournament Bracket"

Randomized List Ranking

- Randomly assign (H)/T to each compressible node
- Compress $(H \rightarrow T$ links

Performance

- Compress all chains in $\log (\mathrm{S})$ rounds

Round 4: 5 nodes (88% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Node Types

Isolated nodes (10\%)

Tips (46\%)

Dead Ends (.2\%)

Half Branch (25\%)

Full Branch (I0\%)

Contrail

http://contrail-bio.sourceforge.net

De novo bacterial assembly

- Genome: E. coli KI2 MGI655, 4.6Mbp
- Input: 20.8M 36bp reads, 200bp insert (~150x coverage)
- Preprocessor: Quake Error Correction

Initial

N
Max
N50
5.l M

27 bp
27 bp

Compressed

Error Correction

Resolve Repeats

Cloud Surfing

Assembly of Large Genomes with Cloud Computing. Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

E. coli Assembly Quality

Incorrect contigs: Align at $<95 \%$ identity or $<95 \%$ of their length

Assembler	Contigs \geq I00bp	N50 (bp)	Incorrect contigs
Contrail PE	300	54,807	4
Contrail SE	529	20,062	0
SOAPdenovo PE	182	89,000	5
ABySS PE	233	45,362	13
Velvet PE	286	54,459	9
EULER-SR PE	216	57,497	26
SSAKE SE	931	11,450	38
Edena SE	680	16,430	6

Contrail

http://contrail-bio.sourceforge.net

De novo Assembly of the Human Genome

- Genome: African male NA 8507 (SRA00027I, Bentley et al., 2008)
- Input: 3.5B 36bp reads, 2 IObp insert ($\sim 40 \mathrm{x}$ coverage)

Initial

Compressed

Error Correction

Resolve Repeats

Cloud Surfing

Assembly of Large Genomes with Cloud Computing. Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.
\approx

One more thing...

Variations and de Bruijn Graphs

Searching for de novo mutations in the families of 3000 autistic children.

- Assemble together reads from mom, dad, affected \& unaffected children
- Look for sequence paths unique to affected child

Summary

- Surviving the data deluge means computing in parallel
- Cloud computing is an attractive platform for large scale sequence analysis and computation
- Significant obstacles ahead
- Time and expertise required for development
- Transfer time
- Privacy / security requirements
- Price
- What are the alternatives?
- Emerging technologies are a great start, but we need continued research
- A word of caution: new technologies are new

Acknowledgements

Ben Langmead

Mihai Pop

Dan Sommer

Jimmy Lin

David Kelley

Thank You!

http://schatzlab.cshl.edu

@mike_schatz

K-mer Counting

- Application developers focus on $2(+\mid$ internal) functions
- Map: input \rightarrow key:value pairs
- Shuffle: Group together pairs with same key

Map, Shuffle \& Reduce All Run in Parallel

- Reduce: key, value-lists \rightarrow output

